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We propose a new scheme for quantum dynamics control of multilevel system using intense lasers. To do so,
we apply intense CW lasers to create a strongly coupled subsystem with which one can make the complementary
space effectively isolated, and we apply the established control schemes to the isolated subsystem. We have
also obtained an effective Hamiltonian for the target subsystem with the help of the second-order perturbation
theory. Numerical demonstrations on model systems show that the present decomposition scheme effectively
works for population dynamics control. It is also found that relaxation processes can be suppressed under the
proposed scheme.

1. Introduction

Quantum dynamics control using lasers has recently gathered
great interest as it covers wide-ranging control targets from
molecular motions, electronic transitions to quantum device
control, and so on.1-34 One of the most basic quantum control
scheme is the one focusing on quantum level population
dynamics. For example, aπ-pulse scheme works efficiently on
100% population inversion in a simple two-level system,35,36

while stimulated Raman adiabatic passage (STIRAP) has been
successfully applied to the population transfer in theΛ-type
three-level system.16-18 There are also quantum control schemes
proposed for specific multilevel systems, which consist of more
than three levels.19-28 These schemes depend on the system
Hamiltonian or the analytical expressions of eigenvalues and
eigenvectors as functions of laser parameters. However, it is
often difficult to obtain analytical solutions for general multilevel
systems consisting of more than four levels. On the other hand,
there is an optimal control theory (OCT) that can be applied to
arbitrary control problems including multilevel quantum system
dynamics.29-34 However, control fields designed by the OCT
tend to show very complicated time dependence, which makes
it difficult to realize experimentally. This happens because we
need to consider all the levels with equal importance in the
global laser optimization. It would make the laser designing
process simple and easy if one could pick up several levels of
interest and confine the population dynamics within those levels.
In this study, we aim to propose a general scheme for controlling
multilevel systems from such a point of view. First, we focus
on effectively decomposing a multilevel quantum system into
compact subsystems, which consist of a small number of levels,
by irradiating intense CW laser fields. Next, we apply well-
established control schemes onto the isolated subsystem. We
also show that the decomposition scheme can be utilized for
the population dynamics control of several variations of
multilevel systems by numerical demonstrations.

2. Theoretical

We consider a general multilevel system as shown in Figure
1. We split the total system in two subspaces, which we call
A- and B-spaces, consisting ofN states{|A1〉,|A2〉,....,|AN〉} and
M states{|B1〉,|B2〉,....,|BM〉}, respectively. We define the A-space
so that there exist no direct optical transitions allowed between
the states. On the other hand, the B-space consists of the states
that can be strongly coupled with each other through optical
interactionΩ. Hereafter, we consider the case in which optical
interactions between A and B-spaces (V1,V2, ...) are weak enough
to be treated by the perturbation theory. We introduce common
detuning parameter∆ for the transitions between|Ai〉 and|Bj〉.
Our main objective is to effectively decompose the total system
into A- and B-spaces and create an isolated subsystem in the
A-space in which we introduce indirect optical transitions for
quantum dynamics control.

To treat laser fields quantum mechanically, we adopt the
dressed state picture.37 The dressed Hamiltonian matrix for the
multilevel system in Figure 1 is given as

Here,HA andHB areN × N andM × M square Hamiltonian
matrices for A- and B-spaces andVAB() VBA

T ) is a M × N (N
× M) matrix. Because there are no direct optical interactions
within the A-space,HA is a diagonal matrix given as

whereIA is theN × N unit matrix. The B-space Hamiltonian,
HB, is given as
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where Ωij denotes the optical interaction between the states
within the B-space andΓi is the population decay constant due
to the relaxation process associated to the state|Bi〉.

Now, we consider the Schro¨dinger equation in a matrix-vector
representation

where εi and ci are theith eigenvalue and its corresponding
eigenvector. One can rewrite eq 4 in a matrix form as

where

Here, we redefineE andU using minor matrices as

whereEA and EB are N × N and M × M diagonal matrices
given as

while UAA andUBB areN × N andM × M matrices, respectively.
Note thatUBA (UAB) denotes a mixing between A- and B-spaces
through the weak optical interactions (V1,V2, ...). To apply the
perturbation theory, we write the total Hamiltonian as

where

Here,λ is a dimensionless parameter introduced to clarify the
perturbation order. We expandE andU in eq 5 as

We defineE(n) andU(n) as

Each component is expanded accordingly as

where I,J ) {A,B}. Inserting eqs 11 and 12 into eq 5 and
comparing both sides of the equation up to the second order of
λ gives following formula:

First, we consider eq 16. Inserting eqs 10 and 13 into eq 16
gives

Notice that UAA
(0) cannot be determined uniquely by eq 19.

BecauseIA is a unit matrix, arbitrary vector in the A-spacecA

can satisfyHA‚cA ) ∆cA, thus we haveEA
(0) ) ∆IA. On the

other hand, one can obtain the zeroth-order states,UBB
(0), and

corresponding eigenvalues,EB
(0), by solving eq 20.

Next, we consider the first-order corrections onto eigenvalues,
EA

(1) and EB
(1). One can rewrite eq 17 explicitly in a matrix

representation as

Comparing both sides of eq 21 together with the relations,EA
(0)

) ∆IA, UBA
(1)‚EA

(0) ) UBA
(1)‚(∆IA) ) (∆IB)‚UBA

(1), (∆IA)‚UAB
(1) )

UAB
(1)‚(∆IB), gives the following:

Figure 1. Schematic diagram of a general multilevel quantum system.
There are no direct optical transition path between the states{|Ai〉} in
A-space, while states in B-space{|Bj〉} can be closely coupled with
each other via strong optical interactionsΩij. {|Ai〉} and {|Bj〉} are
coupled with each other through the weak interactions,Vk.

H‚ci ) εici (i ) 1, ...,N + M) (4)

H‚U ) U‚E (5)

E ) (EA 0
0 EB

), U ) (UAA UAB

UBA UBB
) (7)

H ) H0 + λV (9)

H0 ) (∆IA 0
0 HB

), V ) (0 VAB

VBA 0 ) (10)

E ) E(0) + λE(1) + λ2E(2) + ‚‚‚ ) ∑
n)0

λnE(n) (11)

U ) U(0) + λU(1) + λ2U(2) + ‚‚‚ ) ∑
n)0

λnU(n) (12)

E(n) ) (EA
(n) 0

0 EB
(n) ), U(n) ) (UAA

(n) UAB
(n)

UBA
(n) UBB

(n) ) (13)

EI ) EI
(0) + λEI

(1) + λ2EI
(2) + ‚‚‚ ) ∑

n)0

λnEI
(n) (14)

UIJ ) UIJ
(0) + λUIJ

(1) + λ2UIJ
(2) + ‚‚‚ ) ∑

n)0

λnUIJ
(n) (15)

λ0: H0‚U
(0) ) U(0)‚E(0) (16)

λ1: H0‚U
(1) - U(1)‚E(0) + V‚U(0) ) U(0)‚E(1) (17)

λ2: H0‚U
(2) - U(2)‚E(0) - U(1)‚E(1) + V‚U(1) ) U(0)‚E(2) (18)

∆IA‚UAA
(0) ) UAA

(0)‚EA
(0) (19)

HB‚UBB
(0) ) UBB

(0)‚EB
(0) (20)

(∆IA‚UAA
(1) - UAA

(1)‚EA
(0) ∆IA‚UAB

(1) - UAB
(1).EB

(0)

+ VAB‚UBB
(0)

HB‚UBA
(1) - UBA

(1)‚EA
(0) HB‚UBB

(1) - UBB
(1)‚EB

(0)

+ VBA‚UAA
(0)

)
) (UAA

(0)‚EA
(1) 0

0 UBB
(0)‚EB

(1)) (21)
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From eq 22 andUAA
(0) * 0, one obtainsEA

(1) ) 0, which indicates
that there are no first-order energy corrections in the A-space.
The first-order mixing between A and B-spaces,UAB

(1) andUBA
(1),

are given from eqs 23 and 24 as

We useEB
(0) ) UBB

(0)-1‚HB‚UBB
(0) for deriving the last expression

of eq 27. Note that the first-order mixing is dependent on (∆IB

- EB
(0))-1. Because bothEB

(0) and ∆IB are diagonal matrices,
(∆IB - EB

(0))-1 is also given as a diagonal matrix with the
diagonal elements defined as [(∆IB - EB

(0))-1] ii ) 1/{∆ -
(EB

(0))ii}. Thus, the mixing becomes negligibly small as all the
differences between (EB

(0))ii and ∆ become large. Notice that
this condition can be achieved by introducing largeΩif in HB,
or applying intense lasers to the B-space. Thus, one can
effectively decompose the total multilevel system into effectively
isolated A and B spaces with the condition,Ωif . Vk. One
should note that the complicated B-space consisting of three or
more levels could make it difficult to achieve the clean
decomposition. This is because there could be the zeroth-order
eigenstates in the B-space with the eigenvalue close to∆, which
causes significant mixing with the A-space.

Next, we consider the second-order corrections. Comparing
each element of both sides of eq 18 together with∆IA ) EA

(0),
EA

(1) ) 0, one obtains the following:

Because we are interested in the dynamics control of the
A-space, we focus on the second-order correctionEA

(2). Insert-
ing eq 27 into eq 28 gives

Solving this eigenvalue problem gives the second-order cor-
rection, EA

(2), together with the zeroth-order states in the
A-space,UAA

(0). Here, we introduce the effective Hamiltonian
for the A-space defined as

It is readily seen thatUAA
(0) satisfies the effective Schro¨dinger

equation with respect to the A-space,

whereE(eff) is a diagonal matrix defined as (E(eff))ii ) εi
(eff) ) ∆

+ εi
(2) with εi

(2) ) (EA
(2))ii.

Here, we discuss the relation between the present method
and the reduction scheme utilizing the projection operator
method.3,4 The reduction scheme gives the formal operatorM̃
that exactly describes the subspace dynamics of interest. First,
one should note that the effective Hamiltonian, eq 33, is
equivalent to the approximateM̃ given in ref 3. In the derivation,
the frequency variableω is replaced by the typical frequency,
ω0, of the subspace, which directly corresponds to the system
setting that we take the common detuning parameter∆ in the
A-space. The difference between this work and ref 3 is in the
definition of subspaces. In ref 3, the reduction scheme is used
to obtain the correction dynamics onto the strongly coupled
subspace, which arises from the weak interspace couplings. On
the contrary, in this study, we intend to produce the optically
driven dynamics in the A-space in which there originally exist
no direct optical transitions. In addition to that, one of the
advantages of our formulation is that one can obtain higher-
order corrections by continuing the expansion of eqs 11 and 12
if needed, while it is rather obscure to upgrade the approximation
of M̃.

Here we emphasize again that the common detuning condition
in the A-space,HA ) ∆IA, plays an important role in introducing
the optical transitions in the A-space. Suppose we take different
detuning for each transition within the A-space,UAA

(0), is
determined as the unit matrix, which fails to derive the effective
Hamiltonian eq 33.

Finally, we briefly state how to obtain the dynamics in the
isolated A-space usingH(eff). The time evolution of an arbitrary
initial vector d(0) in the A-space under the decomposition
condition is given as

Note that eq 34 is used in deriving the final expression. More
specifically, the time-evolution of theith component of the state
vector,di(t) ≡ (d(t))i, is given as

whereuif ≡ (UAA
(0))ij andujl

-1 ≡ (UAA
(0)-1)ij. Thus, the population

dynamics of theith state in the A-space is given as

From eq 37, one can see that the energy difference,εj
(eff) -

εk
(eff), plays an important role in the population dynamics, and

there is no dynamics invoked ifεj
(eff) - εk

(eff) ) 0 for all the
combinations ofj and k. Note that the energy differences
originates from the second-order corrections, i.e.,εj

(eff) - εk
(eff)

) εj
(2) - εk

(2). Thus, we need to take into accountEA
(2) in order

to consider the population dynamics due to the indirect optical
transitions in the A-space.

UAA
(0)‚EA

(1) ) 0 (22)

UAA
(0)‚(∆IB - EB

(0)) + VAB‚UBB
(0) ) 0 (23)

(HB - ∆IB)‚UBA
(1) + VBA‚UAA

(0) ) 0 (24)

HB‚UBB
(1) - UBB

(1)‚EB
(0) ) UBB

(0)‚EB
(1) (25)

UAB
(1) ) - VAB‚UBB

(0)‚(∆IB - EB
(0))-1 (26)

UBA
(1) ) (∆IB - HB)-1‚VBA‚UAA

(0) )

UBB
(0)‚(∆IB - EB

(0))-1‚UBB
(0)-1‚VBA‚UAA

(0) (27)

VAB‚UBA
(1) ) UAA

(0)‚EA
(2) (28)

UAB
(2)‚(∆IB - EB

(0)) - UAB
(1)‚EB

(1) + VAB‚UBB
(1) ) 0 (29)

(HB - ∆IB)‚UBA
(2) + VBA‚UAA

(1) ) 0 (30)

HB‚UBB
(2) - UBB

(2)‚EB
(0) - UBB

(1)‚EB
(1) + VBA‚UAB

(1) ) 0 (31)

VBA‚UBB
(2) - UBB

(2)‚EB
(0) -UBB

(1) ‚ EB
(1) + VBA ‚ UAB

(1) ) 0 (32)

H(eff) ) ∆IA + VAB‚(∆IB - HB)-1‚VBA (33)

H(eff)‚UAA
(0) ) UAA

(0)‚E(eff) (34)

d(t) ) exp[- iH(eff)t/p]‚d(0) )
UAA

(0)‚exp[- iE(eff)t/p]‚UAA
(0)-1‚d(0) (35)

di(t) ) ∑
jl

uif exp[- iεj
(eff)t/p]ujl

-1dl(0) (36)

|di(t)|2 ) (∑
km

uik exp[- iεk
(eff)t/p]ukm

-1dm(0))*(∑
jl

uij

exp[- iεj
(eff)t/p]ujl

-1dl)
) ∑

kmjl

uik
/uij(ukm

-1)*ujl
-1

exp[- i(εj
(eff) - εk

(eff))t/p]dm
/ (0)dl(0) (37)
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3. Applications to Multilevel Model Systems

Now, we apply the present decomposition scheme to various
multilevel model systems. We first consider the branch-type
four-level system shown in Figure 2. The A-space consists of
|A1〉 and|A2〉, and there is no direct optical interaction between
them, while|B1〉 and|B2〉 in the B-space can be strongly coupled
through the interactionΩ. Note that only the|B1〉 state is
optically accessible from the two states in the A-space via
interactionsV1 andV2. The total Hamiltonian is given as

where minor matrices are defined as

Here, the basis set in the dressed state picture{|Ã1〉,|Ã2〉|B̃1〉,|B̃1〉}
is defined as

where |n〉, |w〉, and |m〉 denote the number states of the laser
fields relevant to the optical interactionsV1, Ω, and V2,
respectively. The first-order mixing of the B-space components
into the A-space,UBA

(1), is given from eq 27 as

From eq 42, one can see the decomposition condition,Ω .
V1,V2, makesUBA

(1) negligibly small. We obtain the effective
HamiltonianHB4

(eff) from eq 33 as

One obtainsUAA
(0) and its eigenvaluesE(eff) by diagonalizing

HB4
(eff) as

and

Together with the conditionΩ . ∆,Γ1,Γ2, E(eff) can be
approximated to

The expression of eq 46 is highly suggestive. The coherent
dynamics within the isolated A-space is invoked by the
differences in the real part of the eigenvalues, Re[ε1

(eff) - ε2
(eff)],

as shown in eq 37. Note that this quantity is given as∆(V1
2 +

V2
2)/Ω2 in the present case. Because it is proportional to the

detuning parameter∆, the condition∆ * 0 is required for
introducing optically driven dynamics in the A-space. It is
intriguing feature that the time scale of the invoked population
dynamics can be controllable by changing the detuning param-
eter ∆. Note also thatΓ1 disappears in eq 46, which implies
that one can suppress the relaxation process due toΓ1 by
introducing largeΩ.

Now, we will see how we utilize the effective decomposition
for control problems. Here, we aim at 100% population transfer
from the initial state|A1〉 to the target state|A2〉. Because direct
optical transition between|A1〉 and|A2〉 is prohibited, we need
to utilize the intermediate state|B1〉 that optically connects those
two states. However, it suffers from an associated relaxation
process characterized by the population decay constant, from
which we takeΓ1 ) 0.5. Here, all the parameter values forΩ,V1,
V2, ∆, Γ1, andΓ2 are measured in the unit ofpω, whereω is
the transition frequency of|A1〉 T |B1〉. Primitive laser settings,
in which only |B1〉 is used as an intermediate state, do not
efficiently work because the population considerably escapes
from the system. Shown in Figure 3 is the population dynamics
under such a primitive laser condition, i.e.,V1 ) V2 ) 1, Ω )

Figure 2. Schematic diagram of the branch-type four-level system.
A-space consists of|A1〉 and |A2〉, while B-space consists of|B1〉 and
|B2〉. There is a weak optical interactionV1 (V2) between|A1〉 (|A2〉)
and |B1〉, while |B1〉 and |B2〉 are strongly coupled through interaction
Ω. Γ1 (Γ2) denotes a population decay constant associated with|B1〉
(|B2〉), and∆ is a detuning parameter that is commonly taken for the
transitions,|A1〉 T |B1〉 and |A2〉 T |B1〉.

Figure 3. Population dynamics of the branch-type four-level system
with Γ1 ) 0.5,Γ2 ) 0 under the laser condition,V1 ) V2 ) 1, Ω ) 0,
∆ ) 0. Solid, broken, gray solid, and gray broken lines denote the
population dynamics of|A1〉, |A2〉, |B1〉, and|B2〉, respectively.

UAA
(0) ) 1

xV1
2 + V2

2
(-V2 V1

V1 V2
) (44)

E(eff) ) EA
(0) + EA

(2) ) (∆ 0
0 ∆ ) +

∆ + iΓ2

(∆ + iΓ1)(∆ + iΓ2) - Ω2(0 0
0 V1

2 + V1
2) (45)

E(eff) ≈ (∆ 0
0 ∆ ) -

∆ + iΓ2

Ω2 (0 0
0 V1

2 + V2
2) ) (ε1

(eff) 0

0 ε2
(eff) )

(46)

HB4 ) (HA VAB

VBA HB
) (38)

HA ) ∆IA ) (∆ 0
0 ∆ ), HB ) (-iΓ1 Ω

Ω -iΓ2
) (39)

VAB ) (V1 0
V2 0), VBA ) (V1 V2

0 0 ) (40)

|Ã1〉 ≡ |A1〉 X |n + 1〉|w + 1〉|m〉
|Ã2〉 ≡ |A2〉 X |n〉|w + 1〉|m + 1〉

|B̃1〉 ≡ |B1〉 X |n〉|w + 1〉|m〉
|B̃2〉 ≡ |B2〉 X |n〉|w〉|m + 1〉 (41)

UBA
(1) )

xV1
2 + V2

2

(∆ + iΓ1)(∆ + iΓ2) - Ω2(0 ∆ + iΓ2

0 Ω ) (42)

HB4
(eff) ) (∆ 0

0 ∆ ) +
∆ + iΓ2

(∆ + iΓ1)(∆ + iΓ2) - Ω2(V1
2 V1V2

V1V2 V2
2 )
(43)
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0, ∆ ) 0. The final yield of the target state is only 60% because
33.8% of the population is lost through the relaxation process
from |B1〉. Now, we introduce the second intermediate state|B2〉
with Γ2 ) 0. We consider utilizing|B2〉 together with the
decomposition conditionΩ . V1,V2,∆,Γ1,Γ2 in order to suppress
the relaxation from|B1〉. Shown in Figure 4 is the population
dynamics under the laser parameters,V1 ) V2 ) 1, Ω ) 10, ∆
) 0.5. It is clearly seen that the population dynamics occurs in
the A-space, without populating|B1〉 or |B2〉, which indicates
that the A-space is effectively isolated as a weakly interacting
two-level system. Its oscillatory population dynamics between
|A1〉 and |A1〉 is characterized by well-known Rabi oscillation
and its periodTR is given as 2π∆(V1

2 + V2
2)/Ω2. Significant

amount of the initial population can be transferred to|A1〉 by
terminating the laser att ) TR/2, which corresponds to the
π-pulse control scheme. It is shown in Figure 4 that 97.2% of
the population is transferred to the target state|A1〉 at t )
314ω-1. The total population loss is less than 2%. Thus, the
population loss due to the relaxation process of|B1〉 is drastically
suppressed by applying the intense CW laser between|B1〉 and
|B1〉. For comparison, we show the results for the parameter set
that violates the condition satisfied in Figure 2. Shown in Figure
5 is the population dynamics withV1 ) V2 ) 5, Ω ) 10, ∆ )
0.5, in which the decomposition conditionΩ . V1,V2 is not
satisfied. It is seen that the effective decomposition breaks down
and the initial population on|A1〉 escapes to the B-space. The
population disappears through the dissipative state|B1〉, while
|B2〉 is constantly populated. Shown in Figure 6 is the population
dynamics under the condition,V1 ) V2 ) 5, Ω ) 10, ∆ ) 5.
The population dynamics occurs only in the A-space, which
implies that the effective decomposition is well achieved with

the conditionΩ . V1,V2 . However, the total population does
not conserve because the suppression of the relaxation from
|B1〉 is insufficient. This is becauseΓ1 in the eq 45 cannot be
neglected because of the relatively large∆.

Next, we consider the ladder-type four-level system shown
in Figure 7. The initial state is taken to be|A1〉, while we aim
at 100% population transfer onto|A2〉 via intermediate states
|B1〉 and |B2〉, each of which possesses relaxation paths
characterized byΓ1 andΓ2, respectively. The total Hamiltonian
is given as

where

and

Figure 4. Population dynamics of the branch-type four-level system
with Γ1 ) 0.5,Γ2 ) 0 under the laser condition,V1 ) V2 ) 1, Ω ) 10,
∆ ) 0.5. Solid, broken, gray solid, and gray broken lines denote the
population dynamics of|A1〉, |A2〉, |B1〉, and|B2〉, respectively.

Figure 5. Population dynamics of the branch-type four-level system
with Γ1 ) 0.5,Γ2 ) 0 under the laser condition,V1 ) V2 ) 5, Ω ) 10,
∆ ) 0.5. Solid, broken, gray solid, and gray broken lines denote the
population dynamics of|A1〉, |A2〉, |B1〉, and|B2〉, respectively.

Figure 6. Population dynamics of the branch-type four-level system
with Γ1 ) 0.5,Γ2 ) 0 under the laser condition,V1 ) V2 ) 1, Ω ) 10,
∆ ) 5. Solid, broken, gray solid, and gray broken lines denote the
population dynamics of|A1〉, |A2〉, |B1〉, and|B2〉, respectively.

Figure 7. Schematic diagram of the ladder-type four-level system.
A-space consists of|A1〉 and |A2〉, while B-space consists of|B1〉 and
|B2〉. There are weak optical interactionsV1 andV2 corresponding to
the transitions|A1〉 T |B1〉 and |A2〉 T |B2〉, respectively, while|B1〉
and|B2〉 are strongly coupled through interactionΩ. Γ1 (Γ2) denotes a
population decay constant associated with|B1〉 (|B2〉), and ∆ is a
detuning parameter that is commonly taken for the transitions|A1〉 T
|B1〉 and |A2〉 T |B2〉.

HL4 ) (HA VAB

VBA HB
) (47)

HA ) ∆IA ) (∆ 0
0 ∆ ), HB ) (-iΓ1 Ω

Ω -iΓ2
) (48)

VBA ) (V1 0
0 V2

), VAB ) (V1 0
0 V2

) (49)
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The first-order mixing is given from eq 27 as

whereN1 and N2 are normalization constants for the zeroth-
order basis setUAA

(0) defined as

with

It is difficult to confirm the decomposition condition directly
from eq 50 because of the complicated dependency ofL((),
M((), N1, and N2 on the laser parameters,V1, V2, ∆, and Ω.
Therefore, we restrict ourselves to the condition,Ω . ∆,Γ1,Γ2,
which leads to

Here, we useM(() = (2V1V2Ω, N1 ) N2 = 2x2V1V2Ω when
Ω . ∆,Γ1,Γ2. Note that eq 54 indicates that the first-order
mixing becomes negligibly small under the condition,Ω . V1,
V2. Thus, the combined laser conditionΩ . V1,V2,∆,Γ1,Γ2

makes it possible to effectively decompose the ladder-type four-
level system.

The effective Hamiltonian for the isolated A-space is given
as

By diagonalizing eq 55, one obtains eigenvalues

and

In contrast to the case of the branch-type four-level system, off-
diagonal elements of the effective HamiltonianHL4

(eff) is not
proportional to∆ but to Ω. It should be also noted that the
imaginary part ofEA

(2) can be approximated to Im[L(-)] )
Γ2V1

2 - Γ1V2
2 under the conditionΩ . ∆. Thus, one can

minimize the overall relaxation process by takingV1,V2, which
satisfies the conditionV1

2/V2
2 ) Γ1/Γ2 together with largeΩ.

Shown in Figure 8 are the results of numerical calculations
for the caseΓ1 , Γ2. The population decay constants are taken
to beΓ1 ) 0.02 andΓ2 ) 0.32, respectively. We aim at 100%
population transfer from|A1〉 to |A2〉 avoiding the population
loss as far as possible. Shown in Figure 8 is the population
dynamics with a primitive laser setting,V1 ) V2 ) Ω ) 1, ∆
) 0. Because the decomposition conditionΩ . V1,V2 is not
satisfied, the population oscillates between the A- and B-spaces
and the population loss from the B-space is significant. The
remaining population att ) 10ω-1 is only 30.9%. Next, we
apply the decomposition condition,Ω . V1,V2,∆,Γ1,Γ2. Shown
in Figure 9 is the population dynamics under the laser condi-
tion, V1 ) 0.1, V2 ) 0.4, Ω ) 10, ∆ ) 0. It is seen that the
population dynamics occurs only in the A-space without
populating|B1〉, |B2〉, which denotes that the decomposition is
neatly achieved. The Rabi oscillation between|A1〉 and |A1〉 is
observed, and 97.4% of the population is transferred onto the
target state|A2〉 at t ) TR/2 ) 393ω-1. Note that we take the
parameter values ofV1 andV2, satisfying the conditionV2

2/V1
2

) Γ2/Γ1 ) 16 in order to minimize the population loss due
to the relaxation processes. On the other hand, shown in
Figure 10 is the population dynamics with the same laser
condition as those in Figure 9 exceptV1 andV2, whose values
are exchanged, i.e.,V1 ) 0.4, V2 ) 0.1. It is seen that about
20% of the total population is lost although the decomposition
is well achieved.

Finally, we consider the branch-type five-level system, which
is shown in Figure 11. The total Hamiltonian is given as

where

with

The first-order mixing is obtained from eq 27 as

UBA
(1) )

V1

(∆ + iΓ1)(∆ + iΓ2) - Ω2

((∆ + iΓ2)M(+) + 2V2
2Ω2

N1

(∆ + iΓ2)M(-) + 2V2
2Ω2

N2

{M(+) + 2(∆ + iΓ2)V2
2}Ω

N1

{M(-) + 2(∆ + iΓ2)V2
2}Ω

N2

)
(50)

N1 ) xM(+)
2 + 4V1

2V2
2Ω2

N2 ) xM(-)
2 + 4V1

2V2
2Ω2 (51)

M(+) ≡ L(-) + xL(-)
2 + 4V1

2V2
2Ω2

M(-) ≡ L(-) - xL(-)
2 + 4V1

2V2
2Ω2 (52)

L(-) ) (∆ + iΓ2)V1
2 - (∆ + iΓ1)V2

2

L(+) ) (∆ + iΓ2)V1
2 + (∆ + iΓ1)V2

2 (53)

UBA
(1) = - 1

x2Ω
(V2 V2

V1 -V1
) (54)

HL4
(eff) ) (∆ 0

0 ∆ ) +

1

(∆ + iΓ1)(∆ + iΓ2) - Ω2((∆ + iΓ2)V1
2 V1V2Ω

V1V2Ω (∆ + iΓ1)V2
2)

(55)

EA ) EA
(0) + EA

(2) ) (∆ 0
0 ∆ ) +

1

(∆ + iΓ1)(∆ + iΓ2) - Ω2(M(+)/2 0
0 M(-)/2) (56)

UAA
(0) ) (M(+)/N1 M(-)/N2

2V1V2Ω/N1 2V1V2Ω/N2
) (57)

H5B ) (HA VAB

VBA HB
) (58)

HA ) IA ) (∆ 0 0
0 ∆ 0
0 0 ∆ ), HB ) (-iΓ1 Ω

Ω -iΓ2
) (59)

VBA ) (V1 0 V3

0 V2 0 ), VAB ) (V1 0
0 V2

V3 0 ) (60)

UBA
(1) )

V2

(∆ + iΓ1)(∆ + iΓ2) - Ω2

(0
{-M(-) + 2(∆ + iΓ2)V13

2}Ω

N2

{-M(+) + 2(∆ + iΓ2)V13
2}Ω

N3

0
-(∆ + iΓ1)M(-) + 2V13

2Ω2

N2

-(∆ + iΓ1)M(+) + 2V13
2Ω2

N3

)
(61)
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where

with

Here, N1, N2, and N3 are normalization constants forUAA
(0),

which are defined as

Under the conditionΩ . ∆,Γ1,Γ2, we find

Here we use the approximations,M(() = (2V13V2Ω2,
N2 ) N3 = 2x2V13V2Ω. Thus, the laser condition,Ω .
V1,V2,V3,∆,Γ1,Γ2, makes it possible to neglect the first-order
mixing or achieve the decomposition. Under such a condition,
one obtains the effective Hamiltonian for the isolated A-space
as

Diagonalization ofH5B
(eff) gives

Figure 8. Population dynamics of the ladder-type four-level system
with Γ1 ) 0.02,Γ2 ) 0.32 under the laser condition,V1 ) V2 ) Ω )
1, ∆ ) 0. Solid, broken, gray solid, and gray broken lines denote the
population dynamics of|A1〉, |A2〉, |B1〉, and|B2〉, respectively.

Figure 9. Population dynamics of the ladder-type four-level system
with Γ1 ) 0.02,Γ2 ) 0.32 under the laser condition,V1 ) 0.1, V2 )
0.4, Ω ) 10, ∆ ) 0. Solid, broken, gray solid, and gray broken lines
denote the population dynamics of|A1〉, |A2〉, |B1〉, and|B2〉, respectively.

Figure 10. Population dynamics of the ladder-type four-level system
with Γ1 ) 0.02,Γ2 ) 0.32 under the laser condition,V1 ) 0.4, V2 )
0.1, Ω ) 10, ∆ ) 0. Solid, broken, gray solid, and gray broken lines
denote the population dynamics of|A1〉, |A2〉, |B1〉, and|B2〉, respectively.

Figure 11. Schematic diagram of the branch-type five-level system.
A-space consists of|Ai〉 (i ) 1, 2, 3), and B-space consists of|Bi〉 (i )
1, 2). There are weak optical interactionsV1, V2, andV3, corresponding
to the transitions|A1〉 T |B1〉, |A2〉 T |B2〉, and|A3〉 T |B1〉, respectively,
while |B1〉 and|B2〉 are strongly coupled through interactionΩ. Γ1 (Γ2)
denotes a population decay constant associated with|B1〉 (|B2〉), and∆
is a detuning parameter that is commonly taken for the transitions|A1〉
T |B1〉, |A2〉 T |B2〉, and|A3〉 T |B1〉.

M(+) ) L(-) + xL(-)
2 + 4V13

2V2
2Ω2

M(-) ) L(-) - xL(-)
2 + 4V13

2V2
2Ω2 (62)

L(-) ) (∆ + iΓ2)V13
2 - (∆ + iΓ1)V2

2

L(+) ) (∆ + iΓ2)V13
2 - (∆ + iΓ1)V2

2 (63)

V13
2 ) V1

2 + V3
2

N1 ) V13

N2 ) xM(-)
2 + 4V13

2V2
2Ω2 (64)

N3 ) xM(+)
2 + 4V13

2V2
2Ω2

UBA
(1) = - 1

x2Ω
(0 V2 -V2

0 V13 V13
) (65)

H5B
(eff) ) (∆ 0 0

0 ∆ 0
0 0 ∆ ) + 1

(∆ + iΓ1)(∆ + iΓ2) - Ω2

((∆ + iΓ2)V1
2 V1V2Ω (∆ + iΓ2)V1V3

V1V2Ω (∆ + iΓ1)V2
2 V2V3Ω

(∆ + iΓ2)V1V3 V2V3Ω (∆ + iΓ2)V3
2 ) (66)

EA
(0) + EA

(2) ) (0 0 0
0 ∆ 0
0 0 ∆ ) + 1

2{(∆ + iΓ1)(∆ + iΓ2) - Ω2}

(0 0 0

0 L(+) + xL(-)
2 + 4V13

2Ω2 0

0 0 L(+) - xL(-)
2 + 4V13

2Ω2)
(67)
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together with the corresponding eigenvectors or zeroth-order
states

The effective Hamiltonian eq 66 implies that one can create a
Λ-type three-level system in the isolated A-space with the
condition ∆ ) 0, Γ2 = 0. As an example of the population
dynamics control, we consider a particular case withΓ1 ) 0.1,
Γ2 ) 0.01. Our control objective is the population transfer from
|A1〉 to |A3〉 via the intermediate state|A2〉. From the diagonal
elements of eq 66, it is readily expected we should take small
V2 to avoid the relaxation processΓ1, which is ten times larger
thanΓ2. Shown in Figure 12 is the population dynamics under
the parameter setting,V1 ) V3 ) 1, V2 ) 0.1,Ω ) 20, ∆ ) 0.
The initial population on|A1〉 is transferred to the target state
|A3〉 via the intermediate state|A2〉 with the final yield, 98.3%.
Note also that the relaxation process is well suppressed, as in
the case of the branch-type four-level system, and the overall
population loss is less than 2%.

Finally, we discuss possible applications of the present
scheme onto the realistic molecular systems. One of the typical
examples is the isomerization reaction control by laser fields.6,38

In such a system, the potential surface/curve has multiple mini-
ma corresponding to isomers. Because there are significant po-
tential barriers between those isomer states, the corresponding
wave functions, which are localized in the potential minima,
possess very little overlap to each other. Thus, one cannot expect
reaction control using direct optical transitions. To avoid such
difficulties, one resorts to using intermediate excited states that
are optically accessible from both initial and target isomer states.
However, those excited states are likely to be dissipative. In
such a case, we can utilize the present control scheme to promote
the desired isomerization avoiding the population loss via
dissipation.

Notice that one can extract four- or five-level systems from
the manifold levels of the realistic molecular system by irradi-
ating lasers with resonant/near-resonant frequency and intensities
corresponding to the conditionΩ > V. Note also that the pecu-
liar condition for the A-space, i.e., no direct optical transitions,
can be achieved readily by not applying the lasers to the transi-
tions in the A-space, even though they are optically allowed.

4. Summary and Conclusion

In this study, we have proposed a general scheme for
controlling quantum dynamics of a general multilevel system

using CW lasers. The scheme is based on the following
procedure: (1) decompose a total system into simple subsystems
using intense CW lasers, and (2) apply well-established laser
control schemes onto the effectively isolated subsystem. We
have also derived the effective Hamiltonian that describes the
dynamics within the isolated subsystem based on the second-
order perturbation. The scheme has been successfully applied
to four- and five-level systems and found to be useful for
suppression of the relaxation process as well. One of the
advantages of the present control scheme is that one can avoid
a fine phase control between the intense lasers utilized for the
effective decomposition and the weak lasers. It should be also
noted that one does not have to resort to a generic laser
optimization scheme, which requires relatively massive com-
putations and tends to produce complicated control fields.
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Figure 12. Population dynamics of the branch-type five-level system
with Γ1 ) 0.1, Γ2 ) 0.01 under the laser condition,V1 ) V3 ) 1, V2

) 0.1, Ω ) 20, ∆ ) 0. Thick solid, thin solid, thick broken, gray
solid, and gray broken lines denote the population dynamics of|A1〉,
|A2〉, |A3〉, |B1〉, and|B2〉, respectively.

UAA
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0 -M(-)/N2 -M(+)/N3

V1/N1 2V2V3Ω/N2 2V2V3Ω/N3
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